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SUMMARY

Nodal integral methods (NIMs) have been developed and successfully used to numerically solve several
problems in science and engineering. The fact that accurate solutions can be obtained on relatively coarse
mesh sizes, makes NIMs a powerful numerical scheme to solve partial differential equations. However,
transverse integration procedure, a step required in the NIMs, limits its applications to brick-like cells,
and thus hinders its application to complex geometries. To fully exploit the potential of this powerful
approach, abovementioned limitation is relaxed in this work by first using algebraic transformation to
map the arbitrarily shaped quadrilaterals, used to mesh the arbitrarily shaped domain, into rectangles. The
governing equations are also transformed. The transformed equations are then solved using the standard
NIM. The scheme is developed for the Poisson equation as well as for the time-dependent convection–
diffusion equation. The approach developed here is validated by solving several benchmark problems.
Results show that the NIM coupled with an algebraic transformation retains the coarse mesh properties
of the original NIM. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The nuclear industry generally uses production codes based on nodal methods for solving neutron
diffusion and transport equations. An early review of nodal methods, developed and used by
the nuclear industry, is given by Lawrence [1]. Nodal schemes are developed by approximately
satisfying the governing differential equations on finite size brick-like elements that are obtained
by discretizing the space of independent variables.
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Due to their higher accuracy, various approaches based on nodal methods have been used in other
branches of science and engineering to develop efficient numerical schemes [2–4]. Hennart [5]
discusses nodal methods as a general class of computational schemes. Nodal integral methods
(NIMs), a subclass of nodal methods, have been developed for the steady-state [6] and time-
dependent [7] Navier–Stokes equations. NIM was developed for the steady-state Boussinesq equa-
tions for natural convection, and for several steady-state incompressible flow problems [8]. Esser
and Witt [9] applied a nodal scheme to the two-dimensional (2D), vorticity-stream function
formulation of the Navier–Stokes equations. NIM scheme for solving the time-dependent heat
conduction problem was developed by Wilson et al. [7]. Michael et al. [10] developed a second-
and a third-order NIM for the convection–diffusion equation. Although highly innovative, those
early applications of nodal methods for the Navier–Stokes equations did not take full advantage of
the potential that the nodal approach offers. An improved method has recently been developed to
solve the incompressible Navier–Stokes equations. This modified nodal integral method was first
developed for 2D time-dependent problems [11], and then extended for 3D time-dependent flows
as well [12].

Although the NIM yields accurate results with coarse meshes, the full exploitation of its efficiency
is limited due to its applicability only to the meshes, which are constituted by rectangular (or
in case of 3D, cuboidal) cells. This limitation comes from the transverse integration procedure
required in the development of the NIM schemes. One approach used to overcome this limitation
is to couple the NIM-based schemes with other schemes (e.g. finite element, finite analytic, etc.).
This approach has been used by Toreja and Rizwan-uddin [13] for fluid flow problems, and by
Gu and Rizwan-uddin [14] for neutron diffusion equation. In this paper a method is developed to
circumvent this limitation using a different approach.

In the current approach, the domain of computation is divided into arbitrary four-sided cells
(referred to as four-node elements subsequently) and then each element is mapped into a square
element of unit dimension through algebraic transformation. The scheme is developed to solve
the resulting transformed equation. The algebraic transformations are commonly used for the
schemes based on the finite element method [15–17]. The sensitivity of the solution to the element
distortion has been studied by various authors in this context [18–22]. Ooi et al. [23] and Rajendran
et al. [24] have given methods to enhance mesh distortion tolerance of the isoparametric elements.
Similar studies have been carried out in the present work.

2. FORMULATION

In the following formulation, x and y are the axes in the global coordinate system while s and t
are axes in the local coordinate system. The unknown function in the partial differential equations
(PDEs) is T , and � represents the time.

The space is decomposed into arbitrary four-node elements, such as that shown in Figure 1. The
global coordinates are transformed into local (element) coordinates as described in the following
sections.

2.1. Coordinate transform

Consider a generic four-node 2D element specified in the spatial domain �̂ characterized by global
coordinate axes x and y. The objective is to transform the coordinate of the irregular domain �̂
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Figure 1. Coordinate transformation.

to a square domain �, which is characterized by the local coordinate axes s and t , as shown in
Figure 1. This type of element mapping is used extensively in the finite element method during the
numerical evaluation of integrals and in the representation of curved boundaries [15]. The details
of this mapping are discussed next.

Let (xi , yi ) be the coordinates of the i th corner of �̂e. Then, the following equation defines a
continuous mapping �(s, t) from �e to �̂e (see also Appendix A):

x = (1+s)(1+ t)

4
x1+ (1−s)(1+ t)

4
x2+ (1−s)(1− t)

4
x3+ (1+s)(1− t)

4
x4

y = (1+s)(1+ t)

4
y1+ (1−s)(1+ t)

4
y2+ (1−s)(1− t)

4
y3+ (1+s)(1− t)

4
y4

(1)

For this mapping, a function T̂ (x, y) defined over �̂e can be transformed into a function T (s, t)
defined over �e by substituting for x and y from the above equation.

T (s, t)= T̂ (x(s, t), y(s, t)) (2)

Furthermore, if the inverse of �(s, t) exists then one can transform functions defined over (s, t)
into functions defined over (x, y) as follows:

T̂ (x, y)=T (s(x, y), t (x, y)) (3)

Differentiating Equation (3) with respect to x and y results in

T̂x = Ts ·sx +Tt ·tx
T̂y = Ts ·sy+Tt ·ty

(4)

and

T̂xx = Ts ·sxx +Tt ·txx +sx (Tss ·sx +Tst ·tx )+ tx (Tts ·sx +Ttt ·tx )
T̂yy = Ts ·syy+Tt ·tyy+sy(Tss ·sy+Tst ·ty)+ ty(Tts ·sy+Ttt ·ty)
T̂xy = Ts ·sxy+Tt ·txy+sx (Tss ·sy+Tst ·ty)+ tx (Tts ·sy+Ttt ·ty)

(5)
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where sx is the derivative of dependent variable s with respect to the variable x . The other subscripts
also define the derivatives with respect to corresponding variables.

Consider a PDE, represented by the linear second-order differential operator � operating on T̂
in the spatial domain �̂

�̂(T̂ )=F1T̂x +F2T̂y+F3T̂xx +F4T̂yy = p̂(x, y) (6)

where Fi =Fi (x, y). Equations (3)–(5) map this PDE into another linear second-order PDE in the
spatial domain � as follows:

�(T )= f1Ts+ f2Tt + f3Tss+ f4Ttt + f5Tst = p(s, t) (7)

where fn = fn(s, t),−1�s, t�1,n=1–5, so that instead of solving Equation (6) in the global
domain �̂, one can seek the solution of Equation (7) in the local domain �.

In general, for a space decomposition in the global domain �̂, each element is mapped into
a regular element in the local domain. As a result each element may have a different mapping
depending on its geometry. For that reason, the values of coefficients fi may not be same for all the
elements in the domain. In other words, the resulting PDE (Equation (7)) may have a different form
for each element. In the following sections, NIM formulations for two special cases of Equation (6),
namely, Poisson’s equation and convection–diffusion equation are discussed in detail.

2.2. Formulation for 2D Poisson equation

Consider the four-node irregular element (i, j) in the global spatial decomposition �̂. The Poisson
equation in this domain is given as follows:

�2T̂
�x2

+ �2T̂
�y2

= p̂(x, y) (8)

The corresponding equation in local coordinate system (for each element) will be:

f1
�T
�s

+ f2
�T
�t

+ f3
�2T
�s2

+ f4
�2T
�t2

+ f5
�2T
�s�t

= p(s, t) (9)

where

f1(s, t)=sxx +syy

f2(s, t)= txx + tyy

f3(s, t)=s2x +s2y

f4(s, t)= t2x + t2y

f5(s, t)=2(sx ·tx +sy ·ty)

(10)

It should be emphasized that Equation (9) and the subsequent equations are valid only over an
element (i, j). Also, for all the equations in this section a subscript (i, j) is implied, unless a different
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subscript is explicitly used. Equation (9) is operated by 1
2

∫ 1
−1 ds and 1

2

∫ 1
−1 dt independently,

leading to two second-order ordinary differential equations as follows:

f20T̄
s
t (t)+ f40T̄

s
tt (t) = S̄s1(t)=

1

2

∫ 1

−1
(p− f1Ts− f3Tss− f5Tst )ds

f10T̄
t
s (s)+ f30T̄

t
ss(s) = S̄t2(s)=

1

2

∫ 1

−1
(p− f2Tt − f4Ttt − f5Tst )dt

(11)

where transverse-integrated functions are defined as

T̄ s = 1

2

∫ 1

−1
T (s, t)ds

T̄ t = 1

2

∫ 1

−1
T (s, t)dt

(12)

fn0 is obtained by averaging fn over the element, i.e.

fn0= 1

4

∫ 1

−1

∫ 1

−1
fn ds dt, n=1, . . . ,5 (13)

It should be noted that to arrive at Equation (11), two successive approximations are used. The
first approximation (shown here only for the first term on the left-hand side of the first ODE in
Equation (11)) is

1

2

∫ 1

−1
f2(s, t)

�T
�s

ds≈ 1

2

∫ 1

−1
f2(s, t)ds

∫ 1

−1

�T
�s

ds (14)

Similar approximations are used for other terms. The second approximation is as follows:

1

2

∫ 1

−1
fn(s, t)ds≈ 1

4

∫ 1

−1

∫ 1

−1
fn ds dt, n=1, . . . ,5 (15)

These approximations are commonly used in the NIM [10–12] and have been shown to be consistent
with the order of the numerical scheme [10]. It is also pointed out that the terms in Equation (11),
for which the integration and differential operators do not commute, are kept on the right-hand
side of the equation as the pseudo-source terms [10–12].

The unknown inhomogeneous terms on the right-hand side of Equation (11) are expanded in
Legendre polynomials and truncated at the zeroth order to replace S̄s1(t) and S̄t2(s) with constants
S̄s01 and S̄t02 , respectively.

It should be noted from Equation (10) that f3 and f4 are always non-zero resulting in non-zero
values of f30 and f40 in Equation (11). The coefficients f10 and f20, however, may become zero
depending on the geometry of the original element. The analytical solutions of Equation (11) are
different for zero and non-zero values of f10 and f20. For the first ODE in Equation (11) the
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solution is:
if f20=0

T̄ s(t)= S̄s01
2 f40

(t2−1)+ T̄ s(1)− T̄ s(−1)

2
t+ T̄ s(1)+ T̄ s(−1)

2

if f20 �=0

T̄ s(t) = S̄s01
f20

(t−1)+ 2S̄s01
f20

exp(− f24(t−1))−1

exp(2 f24)−1
+ T̄ s(1)

exp(2 f24)−exp(− f24(t−1))

exp(2 f24)−1

+T̄ s(−1)
exp(− f24(t−1))−1

exp(2 f24)−1
(16)

where f24= f20/ f40. Similar equations can be written for the second ODE in Equation (11).
Equation (16) and its counterpart in s direction are written for each element in terms of

unknown pseudo-source terms S̄s01 and S̄t02 ; and unknown edge-averaged values T̄ s(1), T̄ s(−1),
T̄ t (1) and T̄ t (−1). Therefore, six constraints per element are needed to complete the set of
equations.

To obtain the first constraint the transformed PDE (Equation (9)) is operated by 1
4

∫ 1
−1

∫ 1
−1 ds dt .

Then, invoking the definitions of pseudo-source terms (Equation (11)) yields (also see Appendix B)

S̄s01 + S̄t02 = p̄st = 1

4

∫ 1

−1

∫ 1

−1
p(s, t)ds dt (17)

The uniqueness of integral over the element results in the second constraint (see Appendix C):

1

2

∫ 1

−1
T̄ s dt= 1

2

∫ 1

−1
T̄ t ds (18)

The other four constrains are obtained by imposing the continuity of the function and its derivatives
on the edges shared between the two adjacent elements.

Consider two adjacent elements (i, j) and (i+1, j); then, the continuity of function indicates that

T s
i, j (1)=T s

i+1, j (−1) (19)

Another set of equations enforce the continuity of the gradient of the function in the direction
normal to the edge at the midpoint (x0, y0) of the common edge:

m·∇ T̂i, j |(x0,y0) =m·∇ T̂i+1, j |(x0,y0) (20)

where m=(mx ,my) is normal to the common edge between two adjacent elements. The objective
is to write both sides of this equation in terms of the unknown pseudo-source terms and the

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:144–164
DOI: 10.1002/fld



150 E. G. NEZAMI ET AL.

m
(i, j)

n

(i+1, j)

Figure 2. Compatibility criterion at the edge between two adjacent elements.

edge-averaged values of the corresponding element. Consider an element such as (i, j) shown in
Figure 2.

∇ T̂i, j =∇Ti, j · J (x, y) (21)

The term ∇Ti, j =(�Ti, j/�s,�Ti, j/�t), evaluated at midpoints of each edge, is approximated in
terms of edge-averaged values of the element (i, j), as described below:

�Ti, j
�s

(s, t) = �T̄ t
i, j

�s
(s)

�Ti, j
�t

(s, t) = �T̄ s
i, j

�t
(t)

(22)

Similarly, continuity of the temperature and heat flux can be applied at the interface of the (i, j)
and (i, j+1) element. The process is carried out in each element resulting in a complete set of
algebraic equations for the unknowns in the global domain. The solution of these equations yields
edge-averaged temperature for all the edges in the domain. Note that NIM yields edge-averaged
values instead of the point values [10–12].

2.3. NIM formulation for 2D steady-state and time-dependent convection–diffusion equation

The time-dependent convection–diffusion equation in the original coordinate system is

�T̂
��

+u
�T̂
�x

+v
�T̂
�y

=�

(
�2T̂
�x2

+ �2T̂
�y2

)
− p̂(x, y,�) (23)

where T̂ is the temperature, u and v are velocities in the x and y directions, respectively, p is the
source/sink term and � is the diffusion coefficient. The time axis is discretized with a constant
time interval 2��. The discretization in space is same as the that in the steady-state case. The PDE
obtained by the coordinate transformation (in each element) is

f1
�T
�s

+ f2
�T
�t

+ f3
�2T
�s2

+ f4
�2T
�t2

+ f5
�2T
�s�t

= p(s, t,�)+ �T
��

(24)
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where

f1 = �(sxx +syy)−u ·sx −v ·sy
f2 = �(txx + tyy)−u ·tx −v ·ty

f3(s, t) = �(s2x +s2y)

f4(s, t) = �(t2x + t2y )

f5(s, t) = 2�(sx ·tx +sy ·ty)

(25)

It is to be noted from Equation (24) that the transformed steady-state convection–diffusion equation
will be same as the transformed Poisson equation (Equation (11)), except for the modification in
the f terms as shown in Equation (25). Hence, NIM developed for the Poisson equation can be
used for the steady-state convection–diffusion equation with appropriate modification in the fn0
(n=1–5) terms.

The basic methodology used here for the time-dependent convection–diffusion equation with
quadrilateral elements has been previously developed for the same equation with rectangular
elements [10]. For this equation, the transverse-integrated variables are defined as:

T̄ st = 1

4

∫ 1

−1

∫ 1

−1
T ds dt

T̄ s� = 1

4��

∫ 1

−1

∫ ��

��
T d�ds

T̄ t� = 1

4��

∫ 1

−1

∫ ��

��
T d�dt

(26)

Applying the NIM methodology leads to three ODE equations, two of which are similar to
Equation (11). The set of ODEs is as follows:

f20T̄
s�
t (t)+ f40T̄

s�
t t (t) = S̄s�1 (t)= 1

2��

∫ ��

−��

∫ 1

−1
(p− f1Ts− f3Tss− f5Tst )ds d�

f10T̄
t�
s (s)+ f30T̄

t�
ss (s) = S̄t�2 (s)= 1

2��

∫ ��

−��

∫ 1

−1
(p− f2Tt − f4Ttt − f5Tst )dt d�

T̄ st
� (�)= S̄st3 (�) = 1

4

∫ 1

−1

∫ 1

−1
( f1Ts+ f2Tt + f3Tss+ f4Ttt + f5Tst − p)ds dt

(27)

The pseudo-source terms are expanded in Legendre polynomials and truncated at zeroth order.
This expansion and truncation allows one to solve the ODEs analytically.

The first two ODEs in Equation (27) have the same solutions as the ODEs in Equation (11).
The third ODE has the following solution:

T̄ st (�)=(�+��)S̄st03 + T̄ st (−��) (28)
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Three restrictions on pseudo-source terms (similar to Equations (17) and (18)) are:

S̄s�01 + S̄t�02 − S̄st03 = p̄st� = 1

8��

∫ −��

��

∫ 1

−1

∫ 1

−1
p(s, t,�)ds dt d�

1

2

∫ 1

−1
T̄ s� dt = 1

2

∫ 1

−1
T̄ t� ds= 1

2��

∫ ��

−��
T̄ st d�

(29)

In addition to spatial continuity equations (which are same as Equations (19) and (20)), continuity
in time is also considered as follows:

T̄ st
i, j,n−1(��)= T̄ st

i, j,n(−��) (30)

The above equation results in a scheme for marching in time.

3. NUMERICAL RESULTS AND DISCUSSION

It is clear from the formulation that the transformed equations for the Poisson equation and the
convection–diffusion equation are similar to each other. Therefore, results are presented only for
the convection–diffusion equation.

3.1. Steady-state convection–diffusion equation

In this section, a steady-state convection–diffusion problem, similar to what is presented in Toreja
and Rizwan-uddin [13], is discussed. The objective of the problem is to calculate the temperature
distribution T in the flow between two parallel plates with a constant heat flux, q , imposed on
both plates (Figure 3). The flow velocity is given by

u(y)= 3

2
ū

(
1−

( y
h

)2)
(31)

where ū is the mean velocity in the channel and h is shown in the figure. The exact solution in
the channel is given as [25]

T (x, y)=
(
qh

k

){(
3

4

)( y
h

)2(
1− y2

6h2

)
+
(

4

Pe

)( x
h

)}
(32)

where k is the fluid thermal conductivity and Pe is the Peclet number.

D CF

A BE

h

x

y

φ 

Figure 3. Schematic for steady-state diffusion problem in a channel; horizontal distortion.
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Figure 4. Effect of horizontal distortion of the mesh. The edge numbers are counted from E to
F : (a) tan �=0; (b) tan �=1; and (c) tan �=2.

The current implementation of NIM is employed to calculate the temperature distribution T
inside the channel over the parallelogram domain shown in Figure 3. In this figure, D(1,−2.5)
and C(5,−2.5), and points A and B are located on the x-axis. The domain is divided into a 5
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by 10 mesh. The calculations are carried out with qh/k=1, Pe=70 and h=2.5. The boundary
conditions are defined along the external edges according to Equation (32).

Various degrees of distortion in the mesh are achieved by ‘sliding’ edge AB along the x-axis.
The horizontal distortion of the mesh is identified by the angle �, measured between the edge
BC and the vertical axis. Three different values of �, corresponding to tan�=0, tan �=1 and
tan �=2, were used. The temperature T is evaluated at the center of the edges along the line EF
(where E and F bisect edges AB and CD, respectively). Figure 4 plots the results for each value
of �, along with the exact solution. It is observed that the calculated NIM values closely follow
the exact solution. The distortion of the mesh introduces some errors in the calculated values of
T ; however, the relative error never exceeds 2%.

In order to further observe the effect of distortion, the same mesh is distorted vertically by keeping
points A(1,0) and D(1,−2.5) fixed and moving the edge BC vertically toward the positive-y
direction (Figure 5). �, the angle between edge CD and the horizontal line in Figure 5, measures
the vertical distortion of the mesh. Three different meshes corresponding to tan�=0, tan�=0.5
and tan�=1 are used and for each mesh the temperature T along the line EF is calculated. The
plots of the temperature are shown in Figure 6.

3.2. Time-dependent convection–diffusion equation

The first problem chosen for the time-dependent problem is similar to the problem discussed in
the context of steady-state convection–diffusion equation. The difference from the earlier problem
is that instead of a constant heat flux a time-dependent source term is applied in the equation,
which is given as [25]:

Acexp(−ct) f (x, y) (33)

where

f (x, y)=
(
3

4

)( y
h

)2(
1− y2

6h2

)
+
(

4

Pe

)( x
h

)
(34)

This problem is solved by Toreja and Rizwan-uddin [13] with hybrid NIM. Figure 7 shows the
computational domain as well as a generic 4×4 grid used for the solution. Similar grids with
larger number of elements are also used.

D

A

B

C

F

E
h

x

y

φ 

Figure 5. Schematic for steady-state convection–diffusion problem in a channel; vertical distortion.
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Figure 6. Effect of vertical distortion of the mesh. The edge numbers are counted from E to
F : (a) tan �=0; (b) tan �=0.5; and (c) tan �=1.

The results for three Peclet numbers for which results are presented here are 0.7, 70 and 700.
The plots of the solution with a 4×4 grid are given in Figure 8 and those with 6×6 grid are given
in Figure 9.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:144–164
DOI: 10.1002/fld



156 E. G. NEZAMI ET AL.

Figure 7. Schematic for time-dependent convection–diffusion problem in a channel.

The second problem chosen for application of the scheme is the convection of a Gaussian hump
in a rotating velocity field. The schematic of the problem is shown in Figure 10. The problem has
been previously solved by using hybrid NIM by Toreja and Rizwan-uddin [13]. The convection
is large compared with the diffusion in the equation. The diffusion coefficient � is 10−5 and the
flow field is given as:

V=
(
2− y

x−2

)
(35)

with the initial temperature as follows:

T (x, y, t=0)=exp

(
− (x−x0)2

2�2
− (y− y0)2

2�2

)
(36)

For the present simulation �=0.15 and (x0, y0)=(2.86,2.86). The problem is solved in an annulus
of inner radius 0.5 and outer radius 2 with the center of the annulus at (x, y)=(2,2).

Figure 11 shows the generic grid used for the problem. Similar grids are used for different
numbers of total elements. Figures 12(a) and (b) shows the results with total number of elements
3600 and 4800, respectively. Numerical diffusion in the scheme can be seen in the figure as
broadening of the Gaussian distribution as well as reduction in the peak value of the Gaussian.
The peak value of the Gaussian, after one rotation, reduces from 1 to 0.977 and 0.986, in the
case of 3600 elements 4800 elements, respectively. It should be noted that numerical diffusion is
not large and decreases with increasing number of elements. Moreover, all the commonly used
numerical schemes suffer from the numerical diffusion and the present scheme is no exception.

4. CONCLUSIONS

The NIM scheme is developed for a domain consisting of arbitrarily shaped quadrilaterals. The
algebraic transform is used to transform these quadrilaterals to squares. The scheme is developed
for the resulting transformed equation. The distortion of the nodes from the rectangles results in
increase in the error. This behavior is similar to finite volume- or finite element-based schemes.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:144–164
DOI: 10.1002/fld



A NODAL INTEGRAL METHOD FOR QUADRILATERAL ELEMENTS 157

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5

edge number along line E-F 

T

NIM
Exact

t=1000.0

t=50.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5

edge number along line E-F 

T

NIM
Exact t=1000.0

t=50.0

-1

1

3

5

7

9

11

0 1 2 3 4 5

edge number along line E-F 

T

NIM
Exact

t=1000.0

t=50.0

(a)

(b)

(c)

Figure 8. Calculated values for the time-dependent convection–diffusion problem along the EF with 4×4
grid. The edge numbers are counted from E to F : (a) Pe=700; (b) Pe=70; and (c) Pe=0.7.
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Figure 9. Calculated values for the time-dependent convection–diffusion problem along the EF with 6×6
grid. The edge numbers are counted from E to F : (a) Pe=700; (b) Pe=70; and (c) Pe=0.7.
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Figure 10. Schematic of the Gaussian hump problem.

Figure 11. Generic grid for the Gaussian hump problem.

However, the errors do not increase significantly for substantial distortion of the elements. The
application of the developed scheme shows that the high accuracy of the NIM is maintained with
the transformed equations.
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Figure 12. Convection of the Gaussian hump in a rotational flow field with (a) 3600
elements and (b) 4800 elements.

APPENDIX A

For simplicity, Equation (1) can be written as

x = C0+C1s+C2t+C3st

y = D0+D1s+D2t+D3st
(A1)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:144–164
DOI: 10.1002/fld



A NODAL INTEGRAL METHOD FOR QUADRILATERAL ELEMENTS 161

where

C0 = (x1+x2+x3+x4)/4

C1 = (x1−x2−x3+x4)/4

C2 = (x1+x2−x3−x4)/4

C3 = (x1−x2+x3−x4)/4

D0 = (y1+ y2+ y3+ y4)/4

D1 = (y1− y2− y3+ y4)/4

D2 = (y1+ y2− y3− y4)/4

D3 = (y1− y2+ y3− y4)/4

(A2)

In Equation (A1) s and t can be thought of as dependent variables written in terms of independent
variables x and y (in fact one can solve Equation (A1) for x and y). Hence, in order to transform
a typical PDE of the first or second order into local coordinate system, one has to transform
respective coefficients into the local coordinate system.

Differentiating Equation (A1) with respect to x gives

1 = C1sx +C2tx +C3(sx t+ tx s)

0 = D1sx +D2tx +D3(sx t+ tx s)
(A3)

and differentiating the same equation with respect to y

0 = C1sy+C2ty+C3(syt+ tys)

1 = D1sy+D2ty+D3(syt+ tys)
(A4)

Combining Equations (A3) and (A4)[
C1+ tC3 C2+sC3

D1+ t D3 D2+sD3

][
sx sy

tx ty

]
=I (A5)

or

J (x, y)=
[
sx sy

tx ty

]
=
[
C1+ tC3 C2+sC3

D1+ t D3 D2+sD3

]−1

(A6)

This process allows one to obtain sx sy , etc. in terms of s and t without solving the nonlinear
equation.

The same approach can be used for second derivatives as follows. Differentiating Equation (A3)
with respect to x yields

0 = C1sxx +C2txx +C3(2sx tx +sxx t+ txx s)

0 = D1sxx +D2txx +D3(2sx tx +sxx t+ txx s)
(A7)

Differentiating Equation (A4) with respect to y, results in

0 = C1syy+C2tyy+C3(2syty+syyt+ tyys)

0 = D1syy+D2tyy+D3(2syty+syyt+ tyys)
(A8)
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Equations (A7) and (A8) can be combined to yield

[
C1+ tC3 C2+sC3

D1+ t D3 D2+sD3

][
sxx syy

txx tyy

]
=−2

[
C3sx tx C3syty

D3sx tx D3syty

]
(A9)

or

[
sxx syy

txx tyy

]
=−2

[
C1+ tC3 C2+sC3

D1+ t D3 D2+sD3

]−1[
C3sx tx C3syty

D3sx tx D3syty

]
(A10)

or

[
sxx syy

txx tyy

]
=−2J (x, y)

[
C3sx tx C3syty

D3sx tx D3syty

]
(A11)

APPENDIX B

Operating the original PDE (Equation (9)) by 1
4

∫ 1
−1

∫ 1
−1 ds dt and invoking the definitions of

pseudo-source terms yields

Ss01 +St02 + 1

4

∫ 1

−1

∫ 1

−1
f5Tst ds dt= p̄st (B1)

However,

1

4

∫ 1

−1

∫ 1

−1
f5Tst ds dt ≈ 1

4
f50

∫ 1

−1

∫ 1

−1
Tst ds dt

= f50
T (1,1)−T (−1,1)−T (1,−1)+T (−1,−1)

4
(B2)

Approximating

T (1,1)−T (−1,1)−T (1,−1)+T (−1,−1)≈0 (B3)

This assumption yields Equation (15).
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APPENDIX C

The integrals in Equation (18) are evaluated as follows:

f10=0
1

2

∫ 1

−1
T̄ t ds = − C2

3 f30
+ T̄ t (1)+ T̄ t (−1)

2

f10 �=0
1

2

∫ 1

−1
T̄ t ds = −C2

f10
+ C2

f30
− 2C2/ f10

exp

(
2
f1
f3

)
−1

− f3
f1

(
T̄ t (1)− T̄ t (−1)

2

)

+
T̄ t (1)exp

(
2
f1
f3

)
− T̄ t (−1)

exp

(
2
f1
f3

)
−1

(C1)

f20=0
1

2

∫ 1

−1
T̄ sdt = − C1

3 f40
+ ūs(1)+ ūs(−1)

2

f20 �=0
1

2

∫ 1

−1
T̄ sdt = −C1

f20
+ C1

f40
− 2C1/ f20

exp

(
2
f2
f4

)
−1

− f4
f2

(
T̄ s(1)− T̄ s(−1)

2

)

+
T̄ s(1)exp

(
2
f2
f4

)
− T̄ s(−1)

exp

(
2
f2
f4

)
−1

(C2)
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